We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at each step, the online policy can probe and find out which of a small number ($k$) of choices has better reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds have exponentially better dependence on the time horizon compared to the classic regret bounds. In particular, we show that probing with $k=2$ suffices to achieve time-independent regret bounds for online linear and convex optimization. The same number of probes improve the regret bound of stochastic MAB with independent arms from $O(\sqrt{nT})$ to $O(n^2 \log T)$, where $n$ is the number of arms and $T$ is the horizon length. For stochastic MAB, we also consider a stronger model where a probe reveals the reward values of the probed arms, and show that in this case, $k=3$ probes suffice to achieve parameter-independent constant regret, $O(n^2)$. Such regret bounds cannot be achieved even with full feedback after the play, showcasing the power of limited ``advice'' via probing before making the play. We also present extensions to the setting where the hints can be imperfect, and to the case of stochastic MAB where the rewards of the arms can be correlated.
translated by 谷歌翻译
图形神经网络(GNN)已成为一种学习关系数据的强大技术。由于他们执行的消息传递步骤数量相对有限 - 因此一个较小的接收领域,人们对通过结合基础图的结构方面来提高其表现力引起了极大的兴趣。在本文中,我们探讨了亲和力措施作为图形神经网络中的特征,特别是由随机步行引起的措施,包括有效的阻力,击球和通勤时间。我们根据这些功能提出消息传递网络,并评估其在各种节点和图形属性预测任务上的性能。我们的体系结构具有较低的计算复杂性,而我们的功能对于基础图的排列不变。我们计算的措施使网络可以利用图表的连接性能,从而使我们能够超过相关的基准,用于各种任务,通常具有更少的消息传递步骤。在OGB-LSC-PCQM4MV1的最大公共图形回归数据集之一中,我们在编写时获得了最著名的单模验证MAE。
translated by 谷歌翻译
剖面隐藏的马尔可夫模型(PHMM)广泛用于许多生物信息学应用中,以准确识别生物学序列(例如DNA或蛋白质序列)之间的相似性。 PHMM使用常用和高度精确的方法(称为Baum-Welch算法)来计算这些相似性。但是,Baum-Welch算法在计算上很昂贵,现有作品为固定的PHMM设计提供了软件或仅硬件解决方案。当我们分析最先进的作品时,我们发现迫切需要灵活,高性能和节能的硬件软件共同设计,以有效地有效地解决所有主要效率低下的效率PHMM的Baum-Welch算法。我们提出了APHMM,这是第一个灵活的加速框架,可以显着减少PHMM的Baum-Welch算法的计算和能量开销。 APHMM利用硬件软件共同设计来解决Baum-Welch算法中的主要效率低下,通过1)设计灵活的硬件来支持不同的PHMMS设计,2)利用可预测的数据依赖性模式,并使用chip Memory的片段记忆,使用纪念活动技术,memoigience Memoriques,Memoigience Memoriques,Memoigient, 3)通过基于硬件的过滤器快速消除可忽略的计算,4)最小化冗余计算。我们在专用硬件和2)GPU的软件优化方面实现了我们的1)硬件软件优化,以为PHMM提供首个灵活的Baum-Welch加速器。与Baum-Welch算法的CPU,GPU和FPGA实现相比,APHMM提供的显着加速度为15.55 x-260.03x,1.83x-5.34x和27.97倍,分别为27.97倍。 APHMM的表现优于三个重要的生物信息学应用程序的最新CPU实现,1)错误校正,2)蛋白质家族搜索和3)多个序列对齐,比1.29x-59.94x,1.03x-1.75x和分别为1.03x-1.95x。
translated by 谷歌翻译
在考虑混杂变量时估计干预措施的效果是因果推断的关键任务。通常,混杂因素没有观察到,但是我们可以访问大量的非结构化数据(图像,文本),这些数据包含有关缺失混杂因素的有价值的代理信号。本文表明,利用通常被现有算法未使用的非结构化数据提高了因果效应估计的准确性。具体而言,我们引入了深层多模式结构方程,这是一个生成模型,其中混杂因素是潜在变量,非结构化数据是代理变量。该模型支持多个多模式代理(图像,文本)以及缺少数据。我们从经验上证明了基因组学和医疗保健的任务,我们的方法纠正了使用非结构化输入混淆,从而有可能使用以前在因果推理中不使用的大量数据。
translated by 谷歌翻译
3D语义分割是几个场景的基本构建块,了解自主驾驶,机器人和AR / VR等应用程序。若干最先进的语义分割模型遭受零件错误分类问题,其中相同对象的部分被错误地标记。以前的方法已经利用了分层,迭代方法来熔断语义和实例信息,但它们在上下文融合中缺乏可读性,并且是计算复杂和启发式驱动的。本文提出了分段融合,一种基于新的语义和实例信息的分层融合方法,以解决零件错误分类。呈现的方法包括图形分段算法,用于将点分组到段落的段,该段汇编到分段 - 方向特征中的点亮特征,基于学习的关注的网络基于它们的语义和实例特征来融合这些段,然后是简单而有效的连接的组件标记算法将段特征转换为实例标签。段融合可以灵活地使用任何网络架构进行语义/实例分段。当在SCANNet和S3DIS数据集上评估时,它通过高达5%提高了多个语义细分骨架的定性和定量性能。
translated by 谷歌翻译
过去的研究提出了许多硬件预取技术,其中大多数依赖于利用一种特定类型的程序上下文信息(例如,程序计数器,Cacheline地址)来预测未来的存储器访问。这些技术完全忽略了整个系统上的预取器的不良影响(例如,内存带宽使用),或将系统级反馈结合为返回为系统 - 不知预取算法。我们表明,由于其固有的无法在预取帐户中占用多种不同类型的程序上下文和系统级反馈信息,因此在广泛的工作负载和系统配置中往往会在广泛的工作负载和系统配置中丢失其性能效益。在本文中,我们进行了设计一个整体预取算法的案例,该算法学习使用多种不同类型的程序上下文和系统级反馈信息来预取。为此,我们提出了Pythia,它将预取器制定为钢筋学习代理。对于每种需求请求,Pythia会观察多种不同类型的程序上下文信息以进行预取决定。对于每个预取决定,Pythia接收数字奖励,该奖励评估当前内存带宽使用情况下的预取质量。 Pythia使用此奖励来加强程序上下文信息和预取决定之间的相关性,以在将来生成高度准确,及时和系统感知的预取请求。我们使用仿真和硬件综合的广泛评估表明,Pythia在各种工作负载和系统配置中优于多种最先进的预取器,同时在桌面类处理器中产生的1.03%的面积开销,并且工作负载中没有软件更改。 Pythia的源代码可以从https://github.com/cmu-safari/pythia自由下载。
translated by 谷歌翻译